

The Sectoral Decarbonization Approach (SDA) by the Science Based Targets Initiative (SBTi)

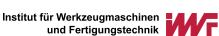
Malte Schäfer, 26.11.2021

Agenda

- → What are Science Based Targets and Sectoral Decarbonization?
- → How does the Sectoral Decarbonization Approach work?
- → Some criticism & moving forward

What is the Science Based Targets Initiative (SBTi)?

DRIVING AMBITIOUS CORPORATE CLIMATE ACTION



- Defines and promotes best practice in emissions reductions and net-zero targets in line with climate science.
- Provides technical assistance and expert resources to companies who set science-based targets in line with the latest climate science.
- Brings together a team of experts to provide companies with independent assessment and validation of targets.
- [...]

from the SBTi Website - "About" Section

What is a Science Based Target (SBT)?

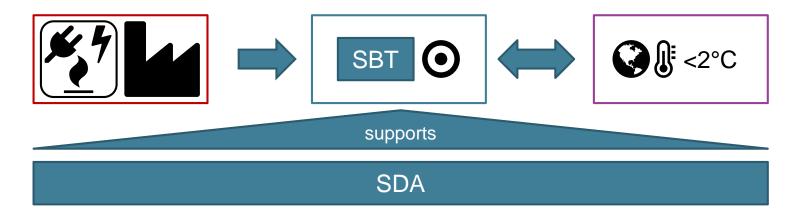
Science-based targets provide a clearly-defined pathway for companies to reduce greenhouse gas (GHG) emissions, helping prevent the worst impacts of climate change and future-proof business growth.

Targets are considered 'science-based' if they are in line with what the latest climate science deems necessary to meet the goals of the Paris Agreement – limiting global warming to well-below 2°C above pre-industrial levels and pursuing efforts to limit warming to 1.5°C.

How do you define a SBT?

Sectoral Decarbonization Approach (SDA)

"[A] scientifically-informed method for companies to set GHG reduction targets necessary to stay within a 2°C temperature rise above preindustrial levels."


What is the purpose of the SDA?

26.11.2021 | Malte Schäfer | Sectoral Decarbonization | Slide 6

The SDA is intended to help companies in homogenous, energy intensive sectors align their emissions reduction targets with a global 2°C pathway.

More on physical indicators later.

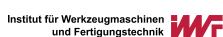
(Homogeneous: Sectors that can be described using a single physical indicator.)

What is the SDA based upon?

SDA

RCP 2.6

2DS


The Energy Technology Perspectives report's budget is consistent with the **representative concentration pathway 2.6 (RCP2.6)** scenario from the **IPCC's Fifth Assessment Report**, which gives the highest likelihood of staying within the global target temperature of less than 2°C in the year 2100.

(RCP2.6 : increase in radiative forcing of 2.6 W/m² relative to pre-industrial times.)

The [SDA] method is based on the 2°C scenario (2DS), one of the International Energy Agency's (IEA) detailed CO₂ sector scenarios modeled in their 2014 Energy Technology Perspectives report.

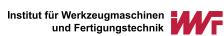
IEA ETP 2014, IPCC AR5 2014

Who is the SDA for?

The SDA is best suited for companies in the following subsectors with well-defined activity and physical intensity data:

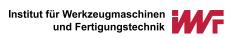
- **Electricity generation**
- Iron and steel
- Chemicals
- **Aluminum**
- Cement
- Pulp and paper
- Road, rail, and air transport
- and commercial buildings

25 % of emissions from electricity and heat sector.

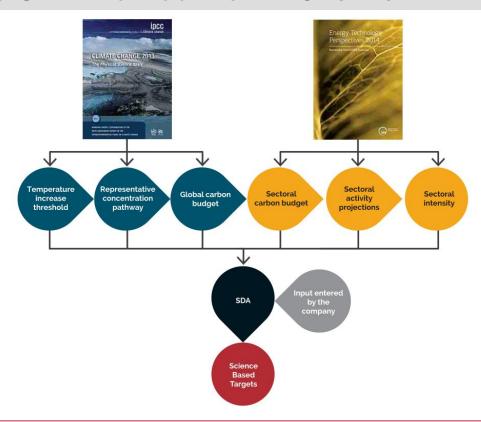


Agenda

- → What are Science Based Targets and Sectoral Decarbonization?
- → How does the Sectoral Decarbonization Approach work?
 - Overview
 - → Sector Level
 - Company Level
- → Some criticism & moving forward

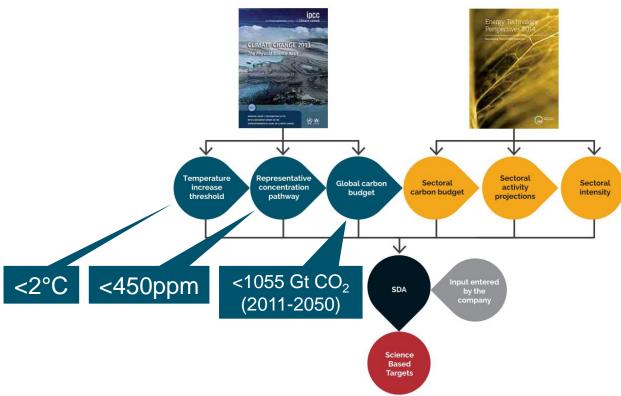


Agenda


- → What are Science Based Targets and Sectoral Decarbonization?
- → How does the Sectoral Decarbonization Approach work?
 - Overview
 - → Sector Level
 - Company Level
- → Some criticism & moving forward

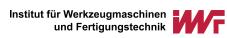
How does the SDA method work? Overview

26.11.2021 | Malte Schäfer | Sectoral Decarbonization | Slide 11

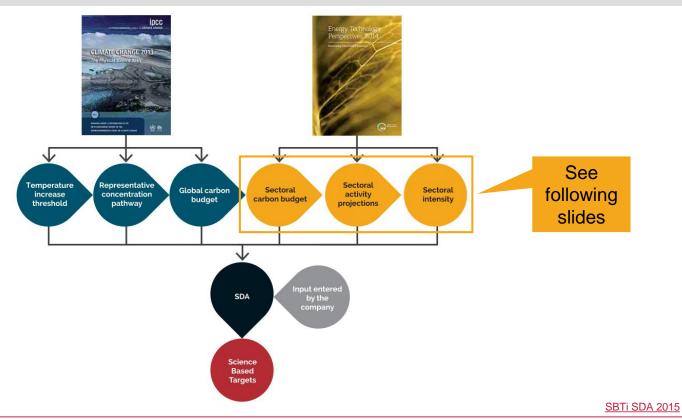


Technische Universität Braunschweig

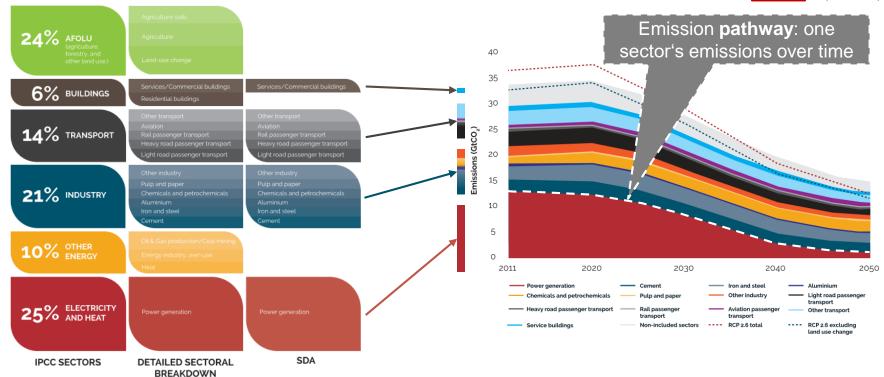
How does the SDA method work? Global level

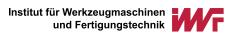


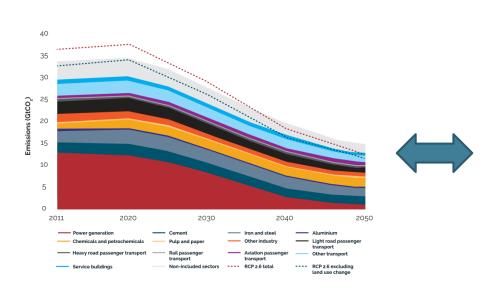
Agenda

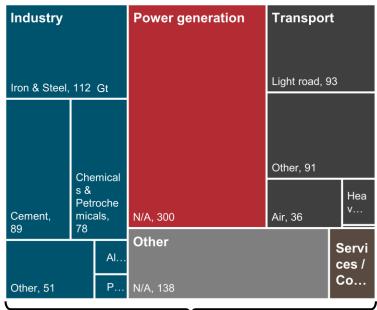

- → What are Science Based Targets and Sectoral Decarbonization?
- → How does the Sectoral Decarbonization Approach work?
 - Overview
 - **→** Sector Level
 - Company Level
- → Some criticism & moving forward

How does the SDA work? Sector level

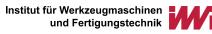



Sector emissions and sector emission pathways

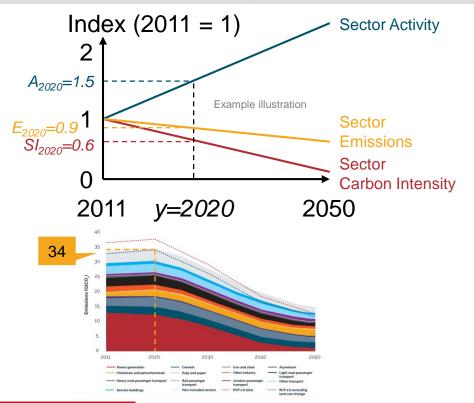

Technische Universität Braunschweig 26.11.2021 | Malte Schäfer |



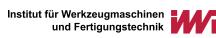
Sector emission pathways and sector budgets



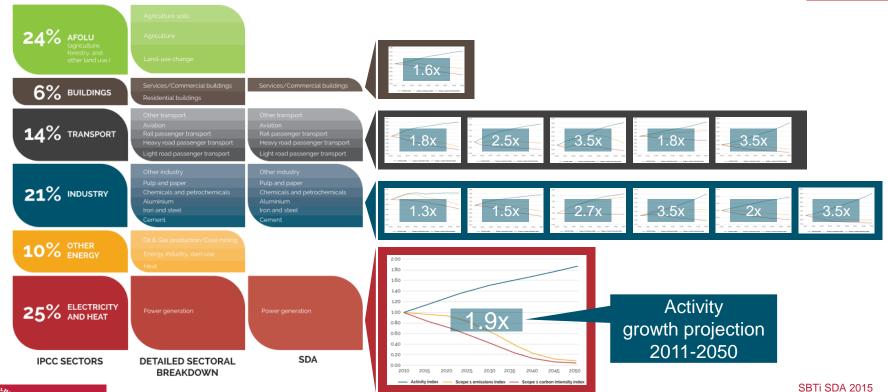
Overall **budget**: **1055 Gt CO**₂ (sum of all emissions of all sectors from 2011-2050)



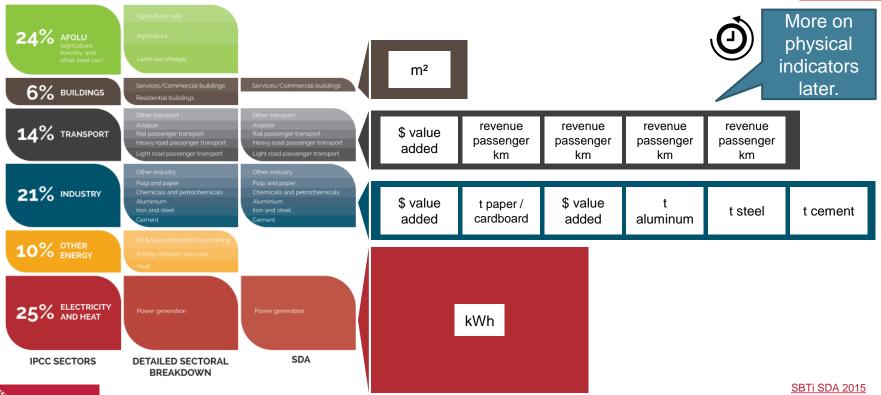
Sectoral activity and sectoral carbon intensity



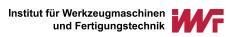
$A_{j,y}$	Activity of sector j in year y				
$SI_{j,y}$	Carbon intensity of sector i in year	rу			
Other _y	Other GHG emissions (not accounted for in the $\mathrm{SI}_{\mathrm{jy}}$ variable) in year y				
$Budget_{2^{\circ}C,2050}$ $Emissions_{2^{\circ}C,y}$	Cumulative carbon budget 2011–50 compatible with a below $2^{\rm o}{\rm C}$ scenario				
	Emissions in year y compatible wi	th a below	2°C scenario		



Activity and intensity projections

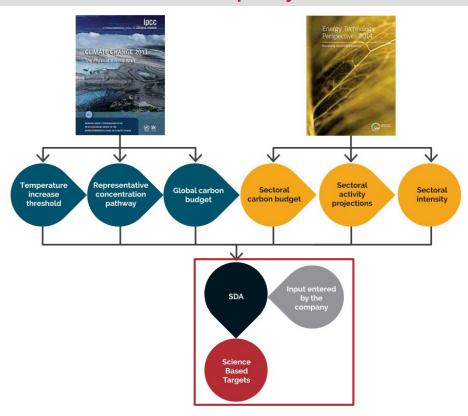


What are the activity indicators for each sector?



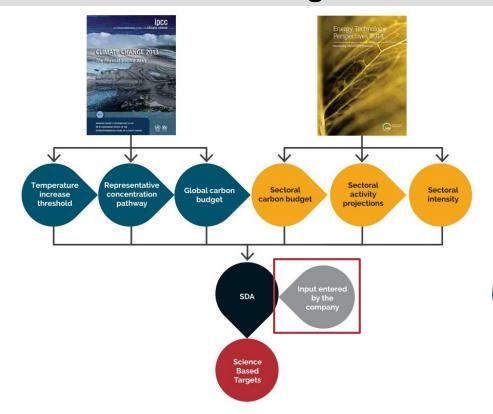
Agenda

- → What are Science Based Targets and Sectoral Decarbonization?
- → How does the Sectoral Decarbonization Approach work?
 - Overview
 - → Sector Level
 - **→** Company Level
- → Some criticism & moving forward



How does the SDA work? Company level

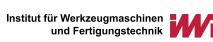
26.11.2021 | Malte Schäfer | Sectoral Decarbonization | Slide 21



What data are used to calculate targets?

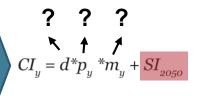
Activities and sectors

Activity levels


Commitment period

Electricity use

Greenhouse gas (GHG) emissions


Calculating company intensity target CI



Example sector: iron & steel

CI (Carbon intensity): company target

CI_y Intensity target of the company in year y (tCO₂e/activity)

Initial company performance in the base year relative to 2050 target (tCO_{2e}/activity)

p. Decarbonization index of the sector in year y

m Market share parameter in year y

SI₂₀₅₀ CO₂ intensity of the sector in target year 2050 (tCO₂/activity)

$$SI_{2050} = 0.9$$
 (t CO_2 /t steel)

0.50

0.00 — 2010

Base year (b): Target year:

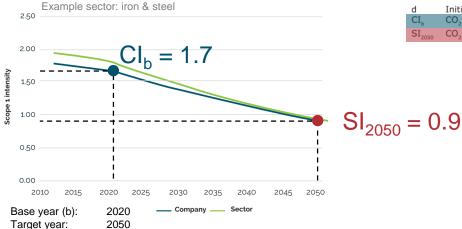
2015

2020

2020

2050

SBTi SDA 2015


2045

Calculating initial company performance d

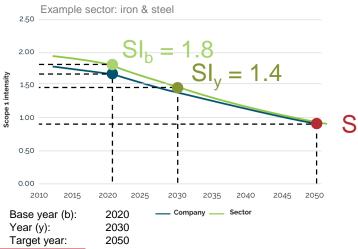
$$CI_{y} = d^{*}p_{y} * m_{y} + SI_{2050}$$
0.8
0.9

$$d = \overline{CI_b} - \overline{SI_{2050}}$$

Initial company performance in the base year relative to the 2050 sector target (tCO_{2e}/activity) CO₃ intensity of the company in base year b (tCO₃/activity)

SI₂₀₅₀ CO₂ intensity of the sector in year 2050 (tCO₂/activity)

$$d = CI_b - SI_{2050} = 1.7 - 0.9 = 0.8$$



Calculating decarbonization index p

$$CI_y = d^*p_y *m_y + SI_{2050}$$
0.8 0.56 0.9

$$p_y = (SI_y - SI_{2050}) / (SI_b - SI_{2050})$$

Decarbonization index of the sector in year y

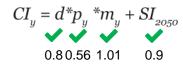
SI CO, intensity of the sector in year y (tCO,/activity)

SI₂₀₅₀ CO₂ intensity of the sector in target year 2050 (tCO₂/activity)

 SI_b CO_2 intensity of the sector in base year b (tCO_2 /activity)

$$SI_{2050} = 0.9$$

$$p_y = (Sl_y - Sl_{2050}) / (Sl_b - Sl_{2050}) = (1.4 - 0.9) / (1.8 - 0.9) = 0.5 / 0.9 = 0.56$$



Calculating market share parameter m

$$m_y = (CA_b/SA_b) / (CA_y/SA_y)$$

m Market share parameter in year y (%)
CA Activity of the company in base year b
SA Activity of the sector in base year b
Activity of the company in year y
SA Activity of the sector in year y

```
m_y = \frac{(CA_b / SA_b) / (CA_y / SA_y)}{(1.4 / 1.2) / (1.5 / 1.3)} = \frac{1.17 / 1.15}{1.01}
```

SBTi SDA 2015

Year (y):

Target year:

2030

2050

Calculating company intensity target CI

CI (Carbon intensity): company target

$$CI_{y} = d^{*}p_{y}^{*}m_{y} + SI_{2050}^{*}$$

$$CI_y = d^*p_y *m_y + SI_{2050}$$

0.8 0.56 1.01 0.9

Intensity target of the company in year y (tCO,e/activity)

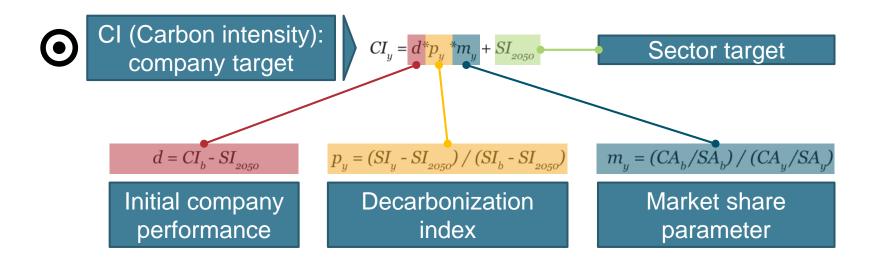
Initial company performance in the base year relative to 2050 target (tCO₂/activity)

p Decarbonization index of the sector in year y

m Market share parameter in year y

 SI_{2050}^{y} CO₂ intensity of the sector in target year 2050 (tCO_{2e}/activity)

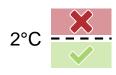
$$Cl_y = d^*p_y^*m_y + Sl_{2050} = 0.8^*0.56^*1.01 + 0.9 = 1.35 (t CO2/t steel)$$



Company target: reduce carbon intensity from 1.7 (in 2020) to 1.35 (in 2030) t CO₂ / t steel.

Summary of the SDA method

Some key assumptions of the SDA method


Excerpt of assumptions:

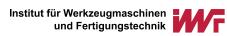
The carbon intensity of each company in a homogeneous sector will converge with the sectoral carbon intensity in 2050.

Economic **growth is decoupled** from CO₂ emissions arising from the use of energy and materials.

The societal goal to stay below **2°C** is sufficient to avoid dangerous climate change and thus the consequent carbon budgets to stay below that threshold are used.

If companies adopt long-term targets (e.g. in 2050) they are also taking on **short-term targets** along the non-linear RCP2.6 trajectory that ensures the overall budget is not blown.

[...]



Agenda

- → What are Science Based Targets and Sectoral Decarbonization?
- → How does the Sectoral Decarbonization Approach work?
- → Some criticism & moving forward

Some criticism of the SDA method

Critical issues:

No space for **new sectors** and their emissions

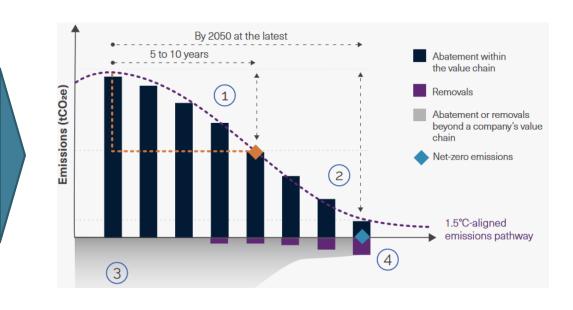
Only 66 % confidence in avoiding 2°C warming

Assumes limiting to 2°C warming is enough

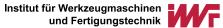
(but: methodology is currently being overhauled to consider 1.5°C and net-zero targets)

Assumes **decoupling** of economic growth and emissions is possible

Intensity instead of absolute targets: emission growth still possible (but: see net-zero targets)


[...]

Moving forward: SBTi Net-Zero Target Setting



Thank you! Questions, comments?

Malte Schäfer, 26.11.2021

References

SBTi Website https://sciencebasedtargets.org/

SBTi Sectoral Decarbonization Approach 2015 https://sciencebasedtargets.org/resources/files/Sectoral-Decarbonization-Approach-Report.pdf

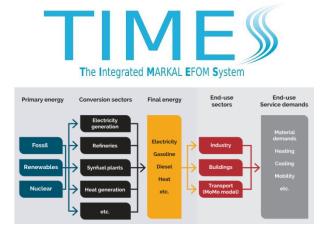
IEA ETP 2014 https://www.iea.org/reports/energy-technology-perspectives-2014

IPCC AR5 Synthesis Report: Climate Change 2014 https://www.ipcc.ch/report/ar5/syr/

SBTi Corporate Net Zero Standard 2021 https://sciencebasedtargets.org/resources/files/Net-Zero-Standard.pdf



BACKUP



What are defining features of the SDA?

subsector-level approach and global least-cost mitigation perspective.

SDA results and assumptions are based on mitigation potential and cost data from the IEA's TIMES model 2°C scenario (2DS), which identifies the least-cost technology mix available to meet final demand for industry, transport, and buildings services.

Least cost technology mix

Final demand for industry, transport and buildig services

Calculating emissions for companies in heterogeneous sectors

EQUATION 7

$$CE_y = CE_b * (SE_y / SE_b)$$

WHERE:

 CE_y Company emissions in year y (tCO_{2e}) CE_b Company emissions in base year b (tCO_{2e}) SE_y Emissions of the sector in year y (tCO_{2e}) SE_b Emissions of the sector in base year b (tCO_{2e})

What about scope 2 emissions?

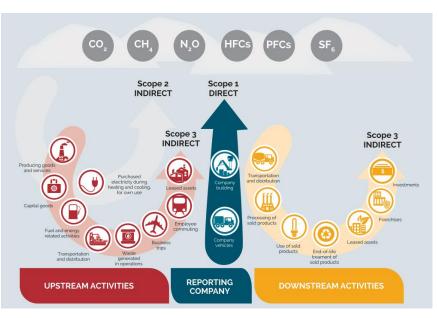
Can be important for many companies So far we only focused on scope 1

EQUATION 8

$$SI_{s2y} = \frac{PS_y *SI_{Power,y}}{SA_y}$$

WHERE:

 $\begin{array}{ll} SI_{_{\text{S2, y}}} \\ PS_{_{y}} \\ SI_{_{\text{Power, y}}} \end{array} \begin{array}{ll} \text{Scope 2 intensity of the sector in year y (tCO}_{_{2}\text{e}}/\text{activity}) \\ \text{Power consumption of the sector in year y (MWh)} \\ \text{Intensity target for the power sector in year y} \\ \text{Activity of the sector in year y (tCO}_{_{2}\text{e}}) \end{array}$

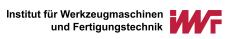


What are scope 1/2/3 emissions?

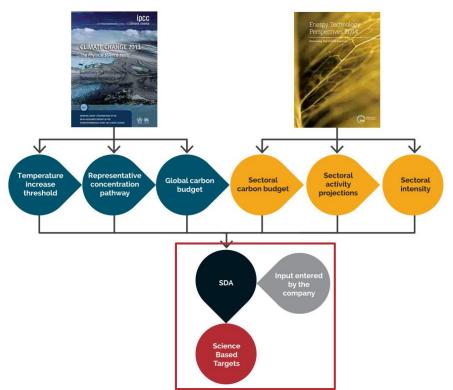
- Scope 1: All direct GHG emissions.
- Scope 2: Indirect GHG emissions from consumption of purchased electricity, heat, or steam.
- Scope 3: Other indirect emissions, such as the extraction and production of purchased materials and fuels, transport-related activities in vehicles not owned or controlled by the reporting entity, electricityrelated activities not covered in Scope 2, outsourced activities, waste disposal, etc.

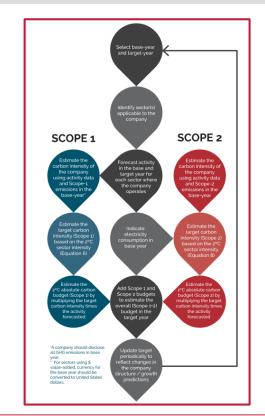
Relevant for SDA: scope 1 & 2



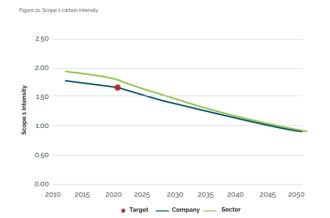

On double counting:

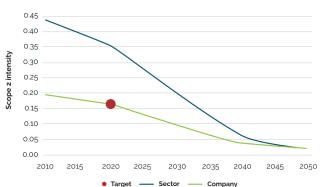
Cross-sector dependencies can hamper proper accounting of emission reductions. For example, a truck manufacturer can achieve a scope 3 target by making more efficient trucks. A transportation company can achieve a scope 1 target by using these more efficient trucks. When both companies claim these emission reductions, it results in double counting. This shouldn't be a problem, since:


- The objective of the method is to set targets for individual companies, not to set up a validated accounting system at the global level. Double counting is only an issue when you aggregate individual results.
- The fact that two companies reduce emissions in the same activity will only create a stronger impetus to achieve this target, and support a better business model, such as the example of the truck manufacturer.
- The objective, in this example, is to reduce the emissions of the transportation sector.
 By achieving this target, both companies contribute to achieving the global 2°C decarbonization pathway.



The steps of target setting for a company – scope 1 & 2





Case study: steel company

TABLE 4. COMPANY A INPUT INFORMATION

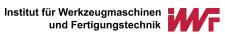
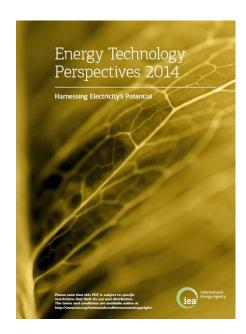
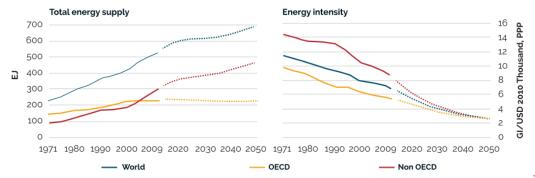
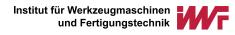


TABLE 5. CARBON INTENSITY AND ABSOLUTE EMISSIONS TARGETS FOR COMPANY A

•					
Iron and steel		Unit of measure	2012	2020	Percent change
Scope 1	Carbon intensity target	tCO ₂ /t crude steel	1.79	1.67	-7
	Absolute emissions target	tCO ₂	126,400,000	133,555,125	6
Scope 2	Carbon intensity target	tCO ₂ /t crude steel	0.19	0.16	-14
	Absolute emissions target	tCO ₂	13,600,000	13,215,418	-3
Scopes 1 and 2	Carbon intensity target	tCO ₂ /t crude steel	1.98	1.83	-8

Assumptions – IEA 2DS


TABLE 3. DRIVING ASSUMPTIONS IN THE IEA ETP 2DS

GDP growth	2011- 20	2020-30	2030-50	2011-50	
Compound annual growth rate (CAGR) in %	4.0	3.4	2.7	3.2	
Marginal abatement cost ^a	2020	2030	2040	2050	
US\$/tCO ₂	30-50	80-100	120-140	140-170	
Population projections	2011	2020	2030	2040	2050
Global population (millions)	6,986	7,701	8,406	9,016	9,524

